

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

FIRST SEMESTER EXAMINATION, 2020/2021 ACADEMIC SESSION

COURSE TITLE: ELECTRIC CIRCUIT THEORY	
COURSE CODE: EEE 317	
EXAMINATION DATE:RD MARCH, 2021	
COURSE LECTURER: DR R. O. Alli-Oke	HOD's SIGNATURE

TIME ALLOWED: 3 HRS

INSTRUCTIONS:

- 1. ANSWER QUESTION 1 AND ANY OTHER FOUR QUESTIONS (TOTAL OF 5 QUESTIONS)
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE <u>NOT</u> ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.

QUESTION #1

- a) Consider the source-driven RC circuit shown in Figure 1a below. [10 marks]
 - i) Find v_c for all times t.
 - ii) Analytically determine the time constant. Hint: this is the time at which $v_{\rm C}(t)=0.632v_{\rm C}(0)$

Figure 1a: Source-Driven RC Circuit

b) The second-order filter in Figure 1b is used after the rectification stage of a power supply design. [10 marks]

Figure 1b: Second-Order Low-Pass Filter

- i) With the aid of diagrams explain why a filter needed after rectification
- ii) Let V_i and V_o represents phasors corresponding to input and output voltages respectively. Show that the transfer function $H(j\omega)=\frac{V_o}{V_i}=\frac{1}{\left(1-\omega^2R^2C^2\right)+3\,j\,\omega\,RC}$. Hint: Use the phasor-domain circuit
- iii) Analytically obtain the DC gain and AC gain from the expression obtained in (ii) above.
- iv) Determine the -3 dB cut-off frequency f_c of this filter. Hint set RC as τ , and solve for ω such that $|H(j\omega)| = \frac{1}{\sqrt{2}}$
- v) Choose R \geq 5 $k\Omega$ and C such that it has a DC gain of 0 dB and a bandwidth of 1 kHz.

QUESTION #2

a) Consider the op-amp circuit shown in the Figure 2a below. Using only KCL, determine $v_{
m out}$. [4 marks]

Figure 2a: Op-Amp Circuit

b) Assume v

b) Assume $v_o(0) = 5$ and use Laplace-domain analysis to determine $v_o(t)$. Hint: $\mathcal{L}\{e^{-t} \ u(t)\} = \frac{1}{s+1}$ and $\mathcal{L}\{\partial t\} = 1$.

Figure 2b: Source-Driven RC Circuit

QUESTION #3

- a) Using phasor-domain analysis, determine the steady-state current i(t) shown in Figure 3b. [4 marks]
- b) Use time-domain analysis to obtain the inductor current $i_L(t)$ for all times for the circuit in Figure 3a.

[6 marks]

Figure 3a: R-L Network

Figure 3b: A Sinusoidal-Excited Circuit

QUESTION #4

a) Using repeated source transformation, determine the Norton equivalent of network A. [4 marks]

Figure 5: Source Transformation

b) Consider the schematic diagram of 2-bit op-amp-based R-2R ladder logic shown in Figure 4b. Use ONLY Thevenin's theorem to determine V_o. Do not use superposition theorem. [6 marks]

Figure 4b: Op-Amp Based R-2R ladder DAC Circuit

QUESTION #5

a) Determine the current through the 10Ω resistor in Figure 1 using nodal analysis.

[4 marks]

Figure 1: Resistive Circuit with Voltage Sources

b) Let V(s) be the Laplace-transform of v(t) shown in Figure 5. Derive the expression for V(s).

[6 marks]

Figure 5: Source-Driven RLC Circuit

QUESTION #6

a) Compute the voltage v_o at the output port in Figure 3b, and the power absorbed by the voltage–dependent source.

[5 marks]

Figure 3b: Voltage-Dependent Source Circuit

- b) Consider the single node-pair circuit below in in Figure 6b. We want to determine the current in the $3k\Omega$ resistor using Thevenin's theorem. [5 marks]
 - i. Find the Thevenin's network of network A.
 - ii. Find the Thevenin's network of network B.
 - iii. Draw the diagram of the reduced circuit diagram of Figure 6b by replacing network A & B with their respective Thevenin's network.
 - iv. Use KVL to compute the current through the $3k\Omega$ resistor.

Figure 6b: Resistive Network

QUESTION #7

a) Consider the network shown in Figure 7a. When $V=10\,V$ and $I=0\,A$, it is observed that $i=-1\,A$ and $v=5\,V$. Additionally, when $I=2\,A$ and V=0, it is observed that $v=20\,V$. With this information, determine R_1 , R_2 and R_3 . [4 marks]

Figure 7a: Resistive Network

b) Use phasor-domain analysis on the circuit shown in the figure (b) to determine the sinusoidal steady-state phasor currents $\mathbf{I_1}$, and $\mathbf{I_2}$ [6 marks]

Figure 8: Phasor-Domain Analysis